EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine

Lead Research Organisation: University of Oxford
Department Name: Oxford Chemistry

Abstract

Modern society is reliant on chemical synthesis for the discovery, development and generation of a wide range of essential products. These include advanced materials and polymers, bulk fine chemicals and fertilizers, and most importantly products that impact on human health and food security such as medicines, drugs, and agrochemicals. Future developments in these areas are benficial for society as a whole and also for a wide range of UK industries. To date it has been common practice for the chemical industry to recruit synthetic chemists after PhD/postdoctoral training and then augment their synthetic knowledge with specific industrial training. Due to the changing nature of the chemical and pharmaceutical industry it is recognized that synthetic chemists require an early understanding of the major challenges and methodologies of biology and medicine. The concept of our SBM CDT arose from the need to address this skills gap without compromising training in chemical synthesis. We have designed a training programme focused on EPSRC priorities to produce internationally outstanding doctoral scientists fluent in cutting edge synthesis, and its application to problems in biology and medicine.

To achieve this, we have formed a genuinely integrated public-private partnership for doctoral training whereby we combine the knowledge and expertise of industrialists into our programme for both training and research. We have forged partnerships with 11 global industrial partners (GSK, UCB, Vertex, Evotec, Eisai, AstraZeneca, Syngenta, Novartis, Takeda, Sumitomo and Pfizer) and a government agency (DSTL), which have offered: (i) financial support (£4.6M cash and £2.4M in-kind); (ii) contributions to taught courses; (iii) research placements; and (iv) management assistance. Our training partners are global leaders in the pharmaceutical and agrochemical industries and are committed to the discovery, development and manufacture of medicines and agrochemicals for the improvementf human health. To fully exploit the opportunities offered by commercial partners, the SBM Centre will adopt an IP-free model to allow completely unfettered exchange of information, know-how and specific expertise between students and supervisors on different projects and across different industrial companies; this would not be possible under existing studentship arrangements. This free exchange of research data and ideas will generate highly trained and well-balanced researchers capable of world-leading research output, and importantly will enable students to benefit from networks between academic and industrial scientists. This will also facilitate interactions between different industrial and government groups, leading to links between pharmaceutical and agrochemical scientists (for example). The one supervisor - one student model, typical of current studentship programmes, is unable to address significant and long-term training and research topics that require a critical mass of multidisciplinary researchers; consequently we propose that substantive research projects will also be cohort-driven. We envisage that this CDT will have a number of training and research foci ('Project Fields') in which synthesis is the unifying core discipline, to enable our public-private partnership to tackle major problems at the chemistry-biology-medicine interface. Our focused research fields are: New Synthetic Methods, 3D Templates for "Lead-Like" Compounds, Functional Probes for Epigenetics, Next Generation Anti-Infectives, Natural Product Chemistry and Tools for Neuroscience.

This doctoral training programme will employ a uniquely integrated academic-industrial training model, producing graduates capable of addressing major challenges in the pharmaceutical/agrochemical industries who will ultimately make a major impact on UK science.

Planned Impact

This programme is focused on a new cohort-driven approach to the training of next-generation doctoral scientists in the practice of novel and efficient chemical synthesis coupled with an in-depth appreciation of its application to biology and medicine.

This collaborative academic-industrial SBM CDT will have long-term benefit to the chemical industry, including the pharmaceutical, agrochemical and fine chemical sectors. These industries will benefit through: (i) the potential to employ individuals trained with broad and relevant scientific and transferable skills; (ii) new approaches to the investigation of complex biological and medical problems through novel chemistry; and (iii) better and more efficient synthetic methods.

We will link the work of DSTL, and our pharmaceutical and agrochemical partners (GSK, UCB, Vertex, Evotec, Eisai, AstraZeneca, Syngenta, Novartis, Takeda, Sumitomo and Pfizer) through a common theme of synthesis training. The design and synthesis of new compounds is essential for disease treatment and prevention, and for maintaining food security. Synthesis contributes significantly to UK tax revenue and results in sustained employment across a number of sectors. Employers in the finance, law, health, academic, analytical, government, and teaching professions, for example, also recognise the value of the translational skill-sets possessed by synthesis postgraduates, which this programme will provide.

The SBM CDT training programme will adopt an IP-free model to enable completely free exchange of information, know-how and specific expertise between students and supervisors on different projects and across different industrial companies. This will lead to better knowledge creation through unfettered access to information from all academics, partners and students involved in the project. By focussing on basic science, we will engender genuine collaboration leading to enabling technology that will be of use across a wide range of industries.

We will train the next generation of multidisciplinary synthetic chemists with an appreciation of the impact of synthesis in biology and medicine. Their unconstrained view of synthesis will aid in new scientific discoveries leading to new products, which (with appropriate inward investment), can lead to the formation of new companies and new UK employment.

We will, in part through an alliance with the Defence, Science and Technology Laboratory, engage with policy-makers to influence future policy issues involving chemistry such as food security and the rise of antibiotic resistance (both of which are relevant to our programme and are important for society as a whole).

Outreach and public engagement will be a key aspect of our programme; and all students in the proposed SBM CDT will take part in at least one outreach activity. Typical activities include: open days in the Chemistry Department through the 'Outreach Alchemists', engaging with the Oxfordshire Science Festival and participation in the various other activities already in place through the public engagement programme of the Department of Chemistry.

The research output of the students will be disseminated via high impact international publications and lectures; these will be of value to other academics in relevant fields and will be of value in the development of further research funding applications. Outreach activities and research output will also be advertised on a website dedicated to the proposed SBM programme.

Publications


10 25 50